If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+14y+8=0
a = 5; b = 14; c = +8;
Δ = b2-4ac
Δ = 142-4·5·8
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6}{2*5}=\frac{-20}{10} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6}{2*5}=\frac{-8}{10} =-4/5 $
| 5b=+28 | | 2x+2(1/2x+2)=40 | | (-3x+27)=(5x+3) | | x+10+x+5+x=75 | | x+3.5x=81 | | 4x(x+2)=144 | | 22+y=36 | | Q=5x-3)x(7x-4) | | 5(2x-3)=7x+2 | | 7(2x-6)+42=0 | | 3x+3=2x=9 | | m-23.34=12.75 | | t-90=30 | | k/8+11=67 | | 21=4x+29 | | 3(2h+1)=9 | | 1-1/x=2.5 | | 12.56=2.3.14.x | | 5x+16=95 | | 12/17=6y | | 145000/(1+(50-1)*0.041225)/3600=x | | 145000/(1+(1-1)*0.041225)/3600=x | | 1/(145000/(1+(1-1)*0.041225)/3600)=x | | -20x-9=13x+57 | | 8.5=17/5v | | 5(3x+2)=15x+2 | | x/2-x=3x/8-11 | | 3x-3=-4x-59 | | -(3000/x^2)+2x=0 | | 17-4y=3y+3 | | x/2=4/x=1 | | 6x+24=3x=+12 |